Properties

Label 7776.jv.72.dc1
Order $ 2^{2} \cdot 3^{3} $
Index $ 2^{3} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_9\times A_4$
Order: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Index: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $b^{2}d^{4}, e^{9}, c^{2}d^{2}e^{4}, e^{6}, c^{3}d^{3}e^{9}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_6^3:S_3^2$
Order: \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.C_3^4.C_2^5$
$\operatorname{Aut}(H)$ $C_6^2:D_6$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
$W$$C_6\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_{18}$
Normalizer:$C_{18}:C_6\times S_4$
Normal closure:$C_9:C_6\times A_4$
Core:$C_3\times A_4$
Minimal over-subgroups:$C_6^2.C_3^2$$A_4\times C_{18}$$C_9\times S_4$$A_4\times D_9$$C_9:S_4$
Maximal under-subgroups:$C_3\times A_4$$C_2\times C_{18}$$C_2^2:C_9$$C_3\times C_9$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$C_6^3:S_3^2$