Properties

Label 7776.jv.48.q1
Order $ 2 \cdot 3^{4} $
Index $ 2^{4} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_9:C_3^2$
Order: \(162\)\(\medspace = 2 \cdot 3^{4} \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $b^{3}c^{3}, e^{6}, d^{2}, b^{2}d^{4}, e^{14}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_6^3:S_3^2$
Order: \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.C_3^4.C_2^5$
$\operatorname{Aut}(H)$ $C_3^2.S_3^2$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
$W$$C_{18}:C_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_{18}:C_6\times S_3$
Normal closure:$A_4\times C_3^3:S_3$
Core:$C_9:C_3$
Minimal over-subgroups:$A_4\times C_9:C_6$$C_3^4:S_3$$C_9:C_6^2$$C_3^2.S_3^2$
Maximal under-subgroups:$C_9:C_3^2$$S_3\times C_3^2$$C_9:C_6$$C_3\times D_9$$C_9:C_6$

Other information

Number of subgroups in this autjugacy class$48$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$2$
Projective image$C_6^3:S_3^2$