Properties

Label 7776.jv.24.i1
Order $ 2^{2} \cdot 3^{4} $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_6\times \He_3$
Order: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $ae^{16}, b^{2}d^{4}, e^{6}, c^{3}, c^{2}d^{2}e^{6}, d^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_6^3:S_3^2$
Order: \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.C_3^4.C_2^5$
$\operatorname{Aut}(H)$ $C_3^2:\GL(2,3)\times D_6$, of order \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
$W$$C_3^2:S_3^2$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_2\times C_3^3:S_3^2$
Normal closure:$C_2\times S_4\times \He_3$
Core:$C_2\times \He_3$
Minimal over-subgroups:$C_2\times S_4\times \He_3$$C_3^3.C_6^2$$S_3\times C_3^2:D_6$
Maximal under-subgroups:$C_6\times \He_3$$S_3\times \He_3$$C_2^2\times \He_3$$C_3^2\times D_6$$C_3^2\times D_6$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-3$
Projective image$C_3^3:S_3\times S_4$