Properties

Label 7776.ga.972.a1
Order $ 2^{3} $
Index $ 2^{2} \cdot 3^{5} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
Exponent: \(2\)
Generators: $\langle(1,4)(2,3), (8,9), (1,2)(3,4)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Ambient group ($G$) information

Description: $C_6^3:S_3^2$
Order: \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_3^3:S_3^2$
Order: \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Automorphism Group: $C_3^3.S_3^3$, of order \(5832\)\(\medspace = 2^{3} \cdot 3^{6} \)
Outer Automorphisms: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_6^2.C_3^4.C_2^4$
$\operatorname{Aut}(H)$ $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$S_3\times C_6^3$
Normalizer:$C_6^3:S_3^2$
Complements:$C_3^3:S_3^2$
Minimal over-subgroups:$C_2^2\times C_6$$C_2^2\times C_6$$C_2^2\times C_6$$C_2^2\times C_6$$C_2^2\times C_6$$C_2^2\times C_6$$C_2^2\times C_6$$C_2\times A_4$$C_2\times A_4$$C_2^4$$C_2\times D_4$$C_2\times D_4$
Maximal under-subgroups:$C_2^2$$C_2^2$$C_2^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$S_3\times C_3^3:S_4$