Properties

Label 7776.ga.72.d1
Order $ 2^{2} \cdot 3^{3} $
Index $ 2^{3} \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2:A_4$
Order: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Index: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,4)(2,3), (10,17,13)(12,14,16), (1,4,2)(10,16,11)(12,18,13)(14,15,17), (11,15,18)(12,14,16), (1,2)(3,4)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, monomial (hence solvable), and metabelian.

Ambient group ($G$) information

Description: $C_6^3:S_3^2$
Order: \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $S_3\times D_6$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $D_6\wr C_2$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Outer Automorphisms: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_6^2.C_3^4.C_2^4$
$\operatorname{Aut}(H)$ $C_6^2:S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
$W$$C_3^2:S_4$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_6\times S_3$
Normalizer:$C_6^3:S_3^2$
Complements:$S_3\times D_6$ $S_3\times D_6$ $S_3\times D_6$
Minimal over-subgroups:$C_3^3:A_4$$C_3^3:A_4$$C_3^3:A_4$$C_6^2:C_6$$C_6^2:C_6$$C_3^2:S_4$$C_3^2:S_4$
Maximal under-subgroups:$C_6^2$$C_3\times A_4$$\He_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-72$
Projective image$C_6^3:S_3^2$