Properties

Label 7776.ga.6.l1
Order $ 2^{4} \cdot 3^{4} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^3.S_3$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $\langle(1,4,2)(5,7,6)(10,16,11,13,12,18,17,14,15), (1,4)(2,3), (10,17,13)(12,14,16) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_6^3:S_3^2$
Order: \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_6^2.C_3^4.C_2^4$
$\operatorname{Aut}(H)$ $C_6^3.D_6$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
$W$$C_6^2.D_6$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_6^3.D_6$
Normal closure:$C_3\times C_6^3:S_3$
Core:$C_6^3.C_3$
Minimal over-subgroups:$C_3\times C_6^3:S_3$$C_6^3.D_6$
Maximal under-subgroups:$C_6^3.C_3$$C_3^3.S_4$$D_6:C_6^2$$C_6^2.D_6$$C_6^2.D_6$$C_6^2.D_6$$C_9:C_6^2$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$1$
Projective image$S_3\times C_3^3:S_4$