Subgroup ($H$) information
Description: | $C_3:S_3$ |
Order: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Index: | \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Generators: |
$\langle(2,3)(6,7)(10,13)(11,16)(12,15)(14,18), (10,17,13)(11,15,18)(12,16,14), (1,3,2)(5,6,7)(10,18,12)(11,16,17)(13,15,14)\rangle$
|
Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.
Ambient group ($G$) information
Description: | $C_6^3:S_3^2$ |
Order: | \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2\times C_6^2.C_3^4.C_2^4$ |
$\operatorname{Aut}(H)$ | $C_3^2:\GL(2,3)$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) |
$W$ | $C_3^2:C_6$, of order \(54\)\(\medspace = 2 \cdot 3^{3} \) |
Related subgroups
Centralizer: | $C_2$ | |||
Normalizer: | $C_3^2:D_6$ | |||
Normal closure: | $S_3\times C_3^3:S_4$ | |||
Core: | $C_3$ | |||
Minimal over-subgroups: | $C_3:S_4$ | $C_3^2:C_6$ | $C_3^2:S_3$ | $C_6:S_3$ |
Maximal under-subgroups: | $C_3^2$ | $S_3$ | $S_3$ |
Other information
Number of subgroups in this autjugacy class | $144$ |
Number of conjugacy classes in this autjugacy class | $2$ |
Möbius function | $0$ |
Projective image | $C_6^3:S_3^2$ |