Properties

Label 7776.ga.36.dv1
Order $ 2^{3} \cdot 3^{3} $
Index $ 2^{2} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^3$
Order: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Index: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(6,7), (1,4)(2,3), (10,17,13)(12,14,16), (11,15,18)(12,14,16), (1,2)(3,4), (12,14,16)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group).

Ambient group ($G$) information

Description: $C_6^3:S_3^2$
Order: \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_6^2.C_3^4.C_2^4$
$\operatorname{Aut}(H)$ $C_2\times \PSL(2,7)\times \SL(3,3)$, of order \(1886976\)\(\medspace = 2^{8} \cdot 3^{4} \cdot 7 \cdot 13 \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_6^3$
Normalizer:$C_6^3:D_6$
Normal closure:$C_3:C_6^3$
Core:$C_3\times C_6^2$
Minimal over-subgroups:$C_3:C_6^3$$C_6\wr C_3$$C_2\times C_6^3$$C_6^3:C_2$
Maximal under-subgroups:$C_3\times C_6^2$$C_3\times C_6^2$$C_3\times C_6^2$$C_2\times C_6^2$$C_2\times C_6^2$$C_2\times C_6^2$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$6$
Projective image$C_6^3:S_3^2$