Properties

Label 7776.ga.324.bh1
Order $ 2^{3} \cdot 3 $
Index $ 2^{2} \cdot 3^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6:C_4$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,2,4,3)(8,9)(11,14)(12,18)(13,17)(15,16), (1,4)(2,3), (8,9), (10,13,17)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_6^3:S_3^2$
Order: \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_6^2.C_3^4.C_2^4$
$\operatorname{Aut}(H)$ $S_3\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_6\times D_6$
Normalizer:$D_6^2:C_6$
Normal closure:$C_6^3:S_3$
Core:$C_2$
Minimal over-subgroups:$C_6:C_{12}$$C_6.D_6$$C_6:C_{12}$$C_6:C_{12}$$C_6.C_2^3$$C_6:D_4$$C_6:D_4$
Maximal under-subgroups:$C_2\times C_6$$C_3:C_4$$C_2\times C_4$

Other information

Number of subgroups in this autjugacy class$27$
Number of conjugacy classes in this autjugacy class$3$
Möbius function$0$
Projective image$S_3\times C_3^3:S_4$