Properties

Label 7776.ga.216.gp1
Order $ 2^{2} \cdot 3^{2} $
Index $ 2^{3} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2:C_4$
Order: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Index: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,4)(2,3), (1,2,4,3)(6,7)(8,9)(10,13)(11,16)(12,15)(14,18), (10,17,13)(11,15,18)(12,16,14), (5,7,6)(10,13,17)(11,18,15)(12,14,16)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_6^3:S_3^2$
Order: \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_6^2.C_3^4.C_2^4$
$\operatorname{Aut}(H)$ $C_2\times C_3^2:\GL(2,3)$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
$W$$S_3\times D_6$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$D_6^2:C_6$
Normal closure:$C_3^4:S_4$
Core:$C_3^2$
Minimal over-subgroups:$C_3^2:C_{12}$$C_3^3:C_4$$C_6.D_6$$C_6^2:C_2$$C_6.D_6$$D_6:S_3$$C_6^2:C_2$
Maximal under-subgroups:$C_3\times C_6$$C_3:C_4$$C_3:C_4$$C_3:C_4$

Other information

Number of subgroups in this autjugacy class$18$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$C_6^3:S_3^2$