Properties

Label 7776.ga.18.d1
Order $ 2^{4} \cdot 3^{3} $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times D_6^2$
Order: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(11,15,18)(12,14,16), (10,17,13)(12,14,16), (2,3)(6,7)(11,12,15,14,18,16)(13,17), (5,7,6)(11,18,15)(12,16,14), (8,9), (6,7)(8,9), (1,4)(2,3)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_6^3:S_3^2$
Order: \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_6^2.C_3^4.C_2^4$
$\operatorname{Aut}(H)$ $D_6^2:(C_2^2\times S_4)$, of order \(13824\)\(\medspace = 2^{9} \cdot 3^{3} \)
$W$$S_3\times D_6$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$D_6^2:C_6$
Normal closure:$C_6^3:S_3^2$
Core:$C_3^2\times D_6$
Minimal over-subgroups:$C_6^2:S_3^2$$D_6^2:C_6$
Maximal under-subgroups:$S_3\times C_6^2$$S_3\times C_6^2$$C_6^2:C_6$$C_6\times S_3^2$$C_6\times S_3^2$$C_6\times S_3^2$$C_6\times S_3^2$$C_6^2:C_2^2$$C_6^2:C_2^2$$D_6^2$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$S_3\times C_3^3:S_4$