Properties

Label 7776.ga.144.cd1
Order $ 2 \cdot 3^{3} $
Index $ 2^{4} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times D_9$
Order: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Index: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $\langle(2,3)(8,9)(10,13)(11,16)(12,15)(14,18), (1,3,2)(10,18,14,13,15,16,17,11,12) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_6^3:S_3^2$
Order: \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_6^2.C_3^4.C_2^4$
$\operatorname{Aut}(H)$ $C_{18}:C_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
$W$$C_{18}:C_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_{18}:C_6\times S_3$
Normal closure:$C_3\times C_6^3:S_3$
Core:$C_3^2$
Minimal over-subgroups:$C_3^2.S_4$$D_9:C_3^2$$C_3\times D_{18}$$S_3\times D_9$
Maximal under-subgroups:$C_3\times C_9$$C_3\times S_3$$D_9$

Other information

Number of subgroups in this autjugacy class$48$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$0$
Projective image$C_6^3:S_3^2$