Properties

Label 7776.dy.6.f1
Order $ 2^{4} \cdot 3^{4} $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2:D_{18}$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $a^{3}, b^{6}, c^{2}e^{2}, b^{9}, c^{2}e^{4}, e^{3}, c^{3}de^{3}, b^{14}c^{3}de^{3}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, a semidirect factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_6^3.S_3^2$
Order: \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_6^2.C_3^3.C_2^3$
$\operatorname{Aut}(H)$ $C_3^3.(C_6\times S_4)$, of order \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
$W$$C_3^3.(C_6\times S_4)$, of order \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_6^3.S_3^2$
Complements:$C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$
Minimal over-subgroups:$C_3^3.(C_6\times S_4)$$C_6^3.D_6$
Maximal under-subgroups:$C_6^2:C_{18}$$C_6^2:D_9$$C_6^2:D_9$$C_6^2.D_6$$C_6^2:D_6$$C_3^2:D_{18}$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$1$
Projective image$C_6^3.S_3^2$