Properties

Label 7776.dy.48.b1
Order $ 2 \cdot 3^{4} $
Index $ 2^{4} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2\wr C_2$
Order: \(162\)\(\medspace = 2 \cdot 3^{4} \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $b^{9}d, c^{2}e^{2}, a^{2}c^{3}de^{3}, b^{6}, c^{2}e^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_6^3.S_3^2$
Order: \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2\times S_4$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_6^2.C_3^3.C_2^3$
$\operatorname{Aut}(H)$ $C_3^2:\GL(2,3)\times \GL(2,3)$, of order \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \)
$W$$C_3^2:D_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2\times C_6^2$
Normalizer:$C_6^3.S_3^2$
Minimal over-subgroups:$C_3^4.C_6$$C_3^2:C_6^2$$C_3^2:C_6^2$$C_3^2:C_6^2$$C_3\wr C_2^2$
Maximal under-subgroups:$C_3^4$$C_3^2:C_6$$S_3\times C_3^2$$S_3\times C_3^2$$C_3^2:C_6$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$24$
Projective image$C_6^3.S_3^2$