Subgroup ($H$) information
Description: | $C_3^2\wr C_2$ |
Order: | \(162\)\(\medspace = 2 \cdot 3^{4} \) |
Index: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Generators: |
$b^{9}d, c^{2}e^{2}, a^{2}c^{3}de^{3}, b^{6}, c^{2}e^{4}$
|
Derived length: | $2$ |
The subgroup is normal, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Ambient group ($G$) information
Description: | $C_6^3.S_3^2$ |
Order: | \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
Description: | $C_2\times S_4$ |
Order: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Automorphism Group: | $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Derived length: | $3$ |
The quotient is nonabelian, monomial (hence solvable), and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2\times C_6^2.C_3^3.C_2^3$ |
$\operatorname{Aut}(H)$ | $C_3^2:\GL(2,3)\times \GL(2,3)$, of order \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \) |
$W$ | $C_3^2:D_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $2$ |
Number of conjugacy classes in this autjugacy class | $2$ |
Möbius function | $24$ |
Projective image | $C_6^3.S_3^2$ |