Properties

Label 7776.dy.36.b1
Order $ 2^{3} \cdot 3^{3} $
Index $ 2^{2} \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^3$
Order: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Index: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $d, c^{2}e^{2}, b^{6}, c^{3}de^{3}, e^{3}, c^{2}e^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal) and abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group).

Ambient group ($G$) information

Description: $C_6^3.S_3^2$
Order: \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_6\times S_3$
Order: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_6^2.C_3^3.C_2^3$
$\operatorname{Aut}(H)$ $C_2\times \PSL(2,7)\times \SL(3,3)$, of order \(1886976\)\(\medspace = 2^{8} \cdot 3^{4} \cdot 7 \cdot 13 \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_3\times C_6^3$
Normalizer:$C_6^3.S_3^2$
Minimal over-subgroups:$C_3\times C_6^3$$C_6^2:C_{18}$$C_6^2:C_{18}$$C_6^3:C_2$$C_6^3:C_2$$C_6^3:C_2$
Maximal under-subgroups:$C_3\times C_6^2$$C_3\times C_6^2$$C_3\times C_6^2$$C_2\times C_6^2$$C_2\times C_6^2$$C_2\times C_6^2$$C_2\times C_6^2$$C_2\times C_6^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$6$
Projective image$C_3^3.(C_6\times S_4)$