Subgroup ($H$) information
| Description: | $C_6^2$ | 
| Order: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) | 
| Index: | \(216\)\(\medspace = 2^{3} \cdot 3^{3} \) | 
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Generators: | $d, e^{3}, a^{2}cde, b^{6}c^{2}e^{4}$ | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and metacyclic.
Ambient group ($G$) information
| Description: | $C_6^3.S_3^2$ | 
| Order: | \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \) | 
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2\times C_6^2.C_3^3.C_2^3$ | 
| $\operatorname{Aut}(H)$ | $S_3\times \GL(2,3)$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) | 
| $W$ | $C_1$, of order $1$ | 
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $12$ | 
| Number of conjugacy classes in this autjugacy class | $1$ | 
| Möbius function | $0$ | 
| Projective image | $C_3^3.(C_6\times S_4)$ | 
