Properties

Label 768.87077.256.a1.a1
Order $ 3 $
Index $ 2^{8} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(256\)\(\medspace = 2^{8} \)
Exponent: \(3\)
Generators: $e^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $3$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $(C_2^3\times C_{12}).D_4$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2^5.D_4$
Order: \(256\)\(\medspace = 2^{8} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Automorphism Group: $C_2^8.C_2^4$
Outer Automorphisms: $D_4\times C_2^3$, of order \(64\)\(\medspace = 2^{6} \)
Nilpotency class: $4$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^8.C_2^5)$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\card{W}$\(2\)

Related subgroups

Centralizer:$C_2^5:C_{12}$
Normalizer:$(C_2^3\times C_{12}).D_4$
Complements:$C_2^5.D_4$
Minimal over-subgroups:$C_6$$C_6$$C_6$$C_6$$C_6$$C_6$$C_6$$C_6$$C_6$$C_6$$C_6$$C_6$$C_6$$C_6$$C_6$$S_3$$S_3$
Maximal under-subgroups:$C_1$

Other information

Möbius function not computed
Projective image not computed