Properties

Label 768.87077.16.bg1.b1
Order $ 2^{4} \cdot 3 $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6:D_4$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a^{2}c, e^{2}, c^{2}d, e^{3}, d^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $(C_2^3\times C_{12}).D_4$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^8.C_2^5)$
$\operatorname{Aut}(H)$ $C_2^4:D_6$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\card{W}$\(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2^4$
Normalizer:$C_2^5:D_6$
Normal closure:$D_6:C_2^4$
Core:$C_2\times C_6$
Minimal over-subgroups:$C_2^3:D_6$$C_2^4:S_3$$C_2^3:D_6$
Maximal under-subgroups:$C_2^2\times C_6$$C_3:D_4$$C_2\times D_6$$C_6:C_4$$C_3:D_4$$C_2\times D_4$
Autjugate subgroups:768.87077.16.bg1.a1768.87077.16.bg1.c1768.87077.16.bg1.d1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function not computed
Projective image not computed