Subgroup ($H$) information
| Description: | $C_2^3:D_6$ | 
| Order: | \(96\)\(\medspace = 2^{5} \cdot 3 \) | 
| Index: | \(8\)\(\medspace = 2^{3} \) | 
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Generators: | $\langle(1,4)(2,6)(3,8)(5,7)(9,11)(10,12), (10,12), (2,5)(6,7)(9,11)(10,12)(14,15), (3,8)(5,7), (13,14,15), (2,6)(5,7)\rangle$ | 
| Derived length: | $2$ | 
The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
| Description: | $(D_6\times C_2^4):C_4$ | 
| Order: | \(768\)\(\medspace = 2^{8} \cdot 3 \) | 
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3:(C_2^7.C_2^6.C_2^2)$ | 
| $\operatorname{Aut}(H)$ | $S_3\times C_2^6:S_4$, of order \(9216\)\(\medspace = 2^{10} \cdot 3^{2} \) | 
| $\card{W}$ | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $32$ | 
| Number of conjugacy classes in this autjugacy class | $8$ | 
| Möbius function | $0$ | 
| Projective image | not computed | 
