Properties

Label 768.85027.4.g1
Order $ 2^{6} \cdot 3 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4:D_6$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,3)(2,5)(4,8)(6,7), (2,5)(6,7)(9,11)(10,12)(14,15), (3,8)(5,7)(10,12), (13,14,15), (1,4)(2,6)(3,8)(5,7), (9,11)(10,12), (2,6)(5,7)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $(D_6\times C_2^4):C_4$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^7.C_2^6.C_2^2)$
$\operatorname{Aut}(H)$ $(C_2^4\times D_{12}).D_4^2$, of order \(24576\)\(\medspace = 2^{13} \cdot 3 \)
$\card{W}$\(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_2^4$
Normalizer:$(D_6\times C_2^4):C_4$
Complements:$C_4$
Minimal over-subgroups:$C_2^5:D_6$
Maximal under-subgroups:$C_{12}:C_2^3$$C_2^3\times D_6$$C_2^3.D_6$$C_2^3:D_6$$C_2^2.D_{12}$$D_6:D_4$$D_6:D_4$$C_2^3:D_4$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image not computed