Properties

Label 768.85027.4.e1
Order $ 2^{6} \cdot 3 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4:C_{12}$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,3)(2,5)(4,8)(6,7), (3,8)(5,7), (13,14,15), (1,4)(2,6)(3,8)(5,7), (9,11)(10,12), (2,6)(5,7), (1,2)(3,7,8,5)(4,6)(9,10)(11,12)\rangle$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $(D_6\times C_2^4):C_4$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^7.C_2^6.C_2^2)$
$\operatorname{Aut}(H)$ $C_2^6:C_2^4$, of order \(1024\)\(\medspace = 2^{10} \)
$\card{W}$\(64\)\(\medspace = 2^{6} \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$(D_6\times C_2^4):C_4$
Complements:$C_2^2$ $C_2^2$
Minimal over-subgroups:$C_2^5:C_{12}$$(C_2^3\times D_6):C_4$
Maximal under-subgroups:$C_{12}:C_2^3$$C_2^3:C_{12}$$C_2^3:C_{12}$$C_2^4:C_4$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$2$
Projective image not computed