Properties

Label 768.56452.8.h1.a1
Order $ 2^{5} \cdot 3 $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6:C_{16}$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Generators: $a, b^{16}, b^{24}, c, a^{2}, a^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_{24}.(C_4\times C_8)$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:((C_2^4\times C_8).C_2^6)$
$\operatorname{Aut}(H)$ $D_{12}:C_2^3$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\operatorname{res}(S)$$D_{12}:C_2^3$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_8$
Normalizer:$C_6:\OD_{32}$
Normal closure:$C_2\times C_{24}.C_8$
Core:$C_2\times C_{24}$
Minimal over-subgroups:$C_6:\OD_{32}$
Maximal under-subgroups:$C_2\times C_{24}$$C_3:C_{16}$$C_3:C_{16}$$C_2\times C_{16}$
Autjugate subgroups:768.56452.8.h1.b1

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$0$
Projective image$D_{24}$