Properties

Label 768.323569.4.r1
Order $ 2^{6} \cdot 3 $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4^2:D_6$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\langle(1,4,3,7)(2,6,5,8), (1,3)(2,5)(4,7)(6,8)(12,13), (1,3)(2,6,5,8)(4,7), (1,2) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $D_4^2:D_6$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and hyperelementary for $p = 2$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^6.C_2^6.C_2^2)$
$\operatorname{Aut}(H)$ $C_2\times D_4^2:D_6$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\card{W}$\(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$C_2\times D_{12}:D_4$
Normal closure:$C_2\times D_{12}:D_4$
Core:$C_2\times C_4\times C_{12}$
Minimal over-subgroups:$C_2\times D_{12}:D_4$
Maximal under-subgroups:$C_2\times C_4\times C_{12}$$D_{12}:C_2^2$$C_6:\OD_{16}$$D_{12}:C_4$$C_4^2:C_2^2$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed