Properties

Label 768.323569.4.i1
Order $ 2^{6} \cdot 3 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{12}:D_4$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\langle(4,7)(6,8), (1,3)(2,5)(4,7)(6,8), (2,5)(4,7), (1,2)(3,5)(4,6)(7,8)(10,11)(12,13), (1,4)(2,6)(3,7)(5,8), (9,10,11), (1,3)(2,8)(5,6)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $D_4^2:D_6$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^6.C_2^6.C_2^2)$
$\operatorname{Aut}(H)$ $C_2\wr D_4\times D_6$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\card{W}$\(192\)\(\medspace = 2^{6} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$D_4^2:D_6$
Complements:$C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$
Minimal over-subgroups:$C_2\times D_{12}:D_4$$D_4^2:S_3$
Maximal under-subgroups:$C_{12}:D_4$$D_4:D_6$$C_{12}.D_4$$D_{12}:C_2^2$$D_{12}:C_4$$D_4:D_4$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$4$
Möbius function not computed
Projective image not computed