Properties

Label 768.322278.64.c1
Order $ 2^{2} \cdot 3 $
Index $ 2^{6} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Index: \(64\)\(\medspace = 2^{6} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(2,5)(6,8), (9,10,11), (1,4)(2,5)(3,7)(6,8)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $(D_6\times C_2^4):C_4$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2^4:C_4$
Order: \(64\)\(\medspace = 2^{6} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2^5.C_2^6:S_4$, of order \(49152\)\(\medspace = 2^{14} \cdot 3 \)
Outer Automorphisms: $C_2^6.C_2^4.D_6$
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4.C_2^4.D_6^2.C_2^3$
$\operatorname{Aut}(H)$ $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\card{W}$\(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_{12}:C_2^4$
Normalizer:$(D_6\times C_2^4):C_4$
Minimal over-subgroups:$C_2^2\times C_6$$C_2^2\times C_6$$C_2^2\times C_6$$C_2^2\times C_6$$C_2^2\times C_6$$C_2\times C_{12}$$C_2\times C_{12}$$C_2\times D_6$$C_6:C_4$
Maximal under-subgroups:$C_6$$C_6$$C_2^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed