Properties

Label 768.1089108.8.e1
Order $ 2^{5} \cdot 3 $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3\times A_4$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,5)(2,6)(3,4)(7,8), (1,2)(3,7)(4,8)(5,6)(9,12)(10,11), (3,5,4)(6,8,7), (1,3)(2,7)(4,5)(6,8), (9,10)(11,12), (9,11)(10,12)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2^5:S_4$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8.C_3.C_6.C_2^3$, of order \(36864\)\(\medspace = 2^{12} \cdot 3^{2} \)
$\operatorname{Aut}(H)$ $S_4\times \GL(3,2)$, of order \(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \)
$\operatorname{res}(S)$$S_4^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_2^3\times S_4$
Normal closure:$C_2^5:A_4$
Core:$C_2^5$
Minimal over-subgroups:$C_2^5:A_4$$C_2^3\times S_4$
Maximal under-subgroups:$C_2^2\times A_4$$C_2^2\times A_4$$C_2^5$$C_2^2\times C_6$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_2^3:S_4$