Subgroup ($H$) information
| Description: | $C_2\times S_4$ |
| Order: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Index: | \(16\)\(\medspace = 2^{4} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$\langle(1,5)(2,6)(3,4)(7,8), (1,2)(3,7)(4,8)(5,6)(9,11)(10,12), (3,5,4)(6,8,7), (1,2)(3,8)(4,7)(5,6)(9,10)(11,12), (1,3)(2,7)(4,5)(6,8)\rangle$
|
| Derived length: | $3$ |
The subgroup is nonabelian, monomial (hence solvable), and rational.
Ambient group ($G$) information
| Description: | $C_2^5:S_4$ |
| Order: | \(768\)\(\medspace = 2^{8} \cdot 3 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian, monomial (hence solvable), and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^8.C_3.C_6.C_2^3$, of order \(36864\)\(\medspace = 2^{12} \cdot 3^{2} \) |
| $\operatorname{Aut}(H)$ | $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| $\operatorname{res}(S)$ | $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| $W$ | $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $64$ |
| Number of conjugacy classes in this autjugacy class | $16$ |
| Möbius function | $-2$ |
| Projective image | $C_2^5:S_4$ |