Properties

Label 768.1088764.8.i1
Order $ 2^{5} \cdot 3 $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2.S_4$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 3 & 10 \\ 5 & 9 \end{array}\right), \left(\begin{array}{rr} 7 & 6 \\ 0 & 7 \end{array}\right), \left(\begin{array}{rr} 7 & 0 \\ 6 & 7 \end{array}\right), \left(\begin{array}{rr} 5 & 0 \\ 0 & 5 \end{array}\right), \left(\begin{array}{rr} 11 & 0 \\ 0 & 11 \end{array}\right), \left(\begin{array}{rr} 10 & 3 \\ 3 & 1 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $D_4\times \GL(2,\mathbb{Z}/4)$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(2\)
Automorphism Group: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Outer Automorphisms: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$A_4.C_2^6.C_2^4$
$\operatorname{Aut}(H)$ $D_4\times S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\card{W}$\(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$D_4\times \GL(2,\mathbb{Z}/4)$
Minimal over-subgroups:$C_2.\GL(2,\mathbb{Z}/4)$$C_2.\GL(2,\mathbb{Z}/4)$$C_2\times \GL(2,\mathbb{Z}/4)$$C_2.\GL(2,\mathbb{Z}/4)$$A_4:C_4^2$
Maximal under-subgroups:$C_2^2\times A_4$$A_4:C_4$$C_2^3:C_4$$C_6:C_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed