Properties

Label 768.1088504.8.d1.b1
Order $ 2^{5} \cdot 3 $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3:C_{12}$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 31 & 16 \\ 16 & 15 \end{array}\right), \left(\begin{array}{rr} 17 & 16 \\ 0 & 17 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 16 & 17 \end{array}\right), \left(\begin{array}{rr} 25 & 0 \\ 0 & 25 \end{array}\right), \left(\begin{array}{rr} 19 & 21 \\ 23 & 12 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 0 & 17 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2\times A_4:\OD_{32}$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2\times C_4$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^3\times A_4).C_2^6$
$\operatorname{Aut}(H)$ $D_4\times S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\operatorname{res}(S)$$C_2^2\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(32\)\(\medspace = 2^{5} \)
$W$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2\times C_8$
Normalizer:$C_2\times A_4:\OD_{32}$
Minimal over-subgroups:$C_2^4:C_{12}$$C_2^3:C_{24}$$C_2^3:C_{24}$
Maximal under-subgroups:$C_2^2\times A_4$$C_4\times A_4$$C_4\times A_4$$C_2^3\times C_4$$C_2\times C_{12}$
Autjugate subgroups:768.1088504.8.d1.a1

Other information

Möbius function$0$
Projective image$C_2^3.S_4$