Properties

Label 768.1088504.6.g1.a1
Order $ 2^{7} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2:\OD_{32}$
Order: \(128\)\(\medspace = 2^{7} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $\left(\begin{array}{rr} 17 & 16 \\ 16 & 1 \end{array}\right), \left(\begin{array}{rr} 23 & 13 \\ 4 & 9 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 16 & 17 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_2\times A_4:\OD_{32}$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^3\times A_4).C_2^6$
$\operatorname{Aut}(H)$ $(C_2^6\times C_4).D_4$, of order \(2048\)\(\medspace = 2^{11} \)
$\operatorname{res}(S)$$D_4:C_2^4$, of order \(128\)\(\medspace = 2^{7} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2^2\times C_8$
Normalizer:$C_2^3:\OD_{32}$
Normal closure:$A_4:\OD_{32}$
Core:$C_2^3\times C_8$
Minimal over-subgroups:$A_4:\OD_{32}$$C_2^3:\OD_{32}$
Maximal under-subgroups:$C_2^3\times C_8$$C_2\times \OD_{32}$$C_2\times \OD_{32}$$C_2^2:C_{16}$$C_2^2:C_{16}$$C_2^2:C_{16}$$C_2^2:C_{16}$
Autjugate subgroups:768.1088504.6.g1.b1768.1088504.6.g1.c1768.1088504.6.g1.d1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$C_2^2\times S_4$