Subgroup ($H$) information
Description: | $C_2\times A_4:C_{16}$ |
Order: | \(384\)\(\medspace = 2^{7} \cdot 3 \) |
Index: | \(2\) |
Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Generators: |
$\left(\begin{array}{rr}
7 & 13 \\
20 & 25
\end{array}\right), \left(\begin{array}{rr}
17 & 0 \\
0 & 17
\end{array}\right), \left(\begin{array}{rr}
19 & 21 \\
23 & 12
\end{array}\right), \left(\begin{array}{rr}
15 & 0 \\
0 & 15
\end{array}\right), \left(\begin{array}{rr}
25 & 0 \\
0 & 25
\end{array}\right), \left(\begin{array}{rr}
17 & 16 \\
0 & 17
\end{array}\right), \left(\begin{array}{rr}
1 & 16 \\
16 & 1
\end{array}\right), \left(\begin{array}{rr}
21 & 0 \\
0 & 21
\end{array}\right)$
|
Derived length: | $3$ |
The subgroup is normal, maximal, a semidirect factor, nonabelian, and monomial (hence solvable).
Ambient group ($G$) information
Description: | $C_2\times A_4:\OD_{32}$ |
Order: | \(768\)\(\medspace = 2^{8} \cdot 3 \) |
Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
Description: | $C_2$ |
Order: | \(2\) |
Exponent: | \(2\) |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_2^3\times A_4).C_2^6$ |
$\operatorname{Aut}(H)$ | $\GL(2,\mathbb{Z}/4):C_2^3$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \) |
$\operatorname{res}(S)$ | $\GL(2,\mathbb{Z}/4):C_2^3$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
$W$ | $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Related subgroups
Other information
Möbius function | $-1$ |
Projective image | $C_2\times S_4$ |