Properties

Label 768.1088504.2.b1.b1
Order $ 2^{7} \cdot 3 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times A_4:C_{16}$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Index: \(2\)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 7 & 13 \\ 20 & 25 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 0 & 17 \end{array}\right), \left(\begin{array}{rr} 19 & 21 \\ 23 & 12 \end{array}\right), \left(\begin{array}{rr} 15 & 0 \\ 0 & 15 \end{array}\right), \left(\begin{array}{rr} 25 & 0 \\ 0 & 25 \end{array}\right), \left(\begin{array}{rr} 17 & 16 \\ 0 & 17 \end{array}\right), \left(\begin{array}{rr} 1 & 16 \\ 16 & 1 \end{array}\right), \left(\begin{array}{rr} 21 & 0 \\ 0 & 21 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, maximal, a semidirect factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_2\times A_4:\OD_{32}$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^3\times A_4).C_2^6$
$\operatorname{Aut}(H)$ $\GL(2,\mathbb{Z}/4):C_2^3$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$\operatorname{res}(S)$$\GL(2,\mathbb{Z}/4):C_2^3$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_8$
Normalizer:$C_2\times A_4:\OD_{32}$
Complements:$C_2$ $C_2$ $C_2$ $C_2$
Minimal over-subgroups:$C_2\times A_4:\OD_{32}$
Maximal under-subgroups:$C_2^3:C_{24}$$A_4:C_{16}$$A_4:C_{16}$$C_2^3:C_{16}$$C_6:C_{16}$
Autjugate subgroups:768.1088504.2.b1.a1

Other information

Möbius function$-1$
Projective image$C_2\times S_4$