Properties

Label 768.1088320.96.be1
Order $ 2^{3} $
Index $ 2^{5} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_4$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\left(\begin{array}{rr} 7 & 10 \\ 7 & 11 \end{array}\right), \left(\begin{array}{rr} 7 & 0 \\ 6 & 7 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $D_4.\GL(2,\mathbb{Z}/4)$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$A_4.C_2^6.C_2^4$
$\operatorname{Aut}(H)$ $D_4$, of order \(8\)\(\medspace = 2^{3} \)
$\card{W}$\(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2^2\times C_4$
Normalizer:$C_2^3:Q_8$
Normal closure:$C_2^4.D_6$
Core:$C_2$
Minimal over-subgroups:$C_2^2\times C_4$$C_2^2:C_4$$C_4:C_4$$C_4:C_4$$C_2^2:C_4$
Maximal under-subgroups:$C_2^2$$C_4$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image not computed