Subgroup ($H$) information
| Description: | $C_2^3\times A_4$ | 
| Order: | \(96\)\(\medspace = 2^{5} \cdot 3 \) | 
| Index: | \(8\)\(\medspace = 2^{3} \) | 
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Generators: | 
		
    $\left(\begin{array}{rr}
11 & 6 \\
6 & 5
\end{array}\right), \left(\begin{array}{rr}
7 & 0 \\
6 & 7
\end{array}\right), \left(\begin{array}{rr}
1 & 6 \\
6 & 1
\end{array}\right), \left(\begin{array}{rr}
5 & 0 \\
0 & 5
\end{array}\right), \left(\begin{array}{rr}
7 & 0 \\
0 & 7
\end{array}\right), \left(\begin{array}{rr}
7 & 9 \\
3 & 4
\end{array}\right)$
    
    
    
         | 
| Derived length: | $2$ | 
The subgroup is characteristic (hence normal), nonabelian, monomial (hence solvable), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $D_4.\GL(2,\mathbb{Z}/4)$ | 
| Order: | \(768\)\(\medspace = 2^{8} \cdot 3 \) | 
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
| Description: | $D_4$ | 
| Order: | \(8\)\(\medspace = 2^{3} \) | 
| Exponent: | \(4\)\(\medspace = 2^{2} \) | 
| Automorphism Group: | $D_4$, of order \(8\)\(\medspace = 2^{3} \) | 
| Outer Automorphisms: | $C_2$, of order \(2\) | 
| Derived length: | $2$ | 
The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $A_4.C_2^6.C_2^4$ | 
| $\operatorname{Aut}(H)$ | $S_4\times \GL(3,2)$, of order \(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \) | 
| $\card{W}$ | \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ | 
| Möbius function | $0$ | 
| Projective image | not computed |