Subgroup ($H$) information
| Description: | $C_2^4$ | 
| Order: | \(16\)\(\medspace = 2^{4} \) | 
| Index: | \(48\)\(\medspace = 2^{4} \cdot 3 \) | 
| Exponent: | \(2\) | 
| Generators: | 
		
    $\left(\begin{array}{rr}
11 & 6 \\
6 & 5
\end{array}\right), \left(\begin{array}{rr}
5 & 0 \\
0 & 5
\end{array}\right), \left(\begin{array}{rr}
7 & 6 \\
0 & 7
\end{array}\right), \left(\begin{array}{rr}
7 & 0 \\
6 & 7
\end{array}\right)$
    
    
    
         | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.
Ambient group ($G$) information
| Description: | $D_4.\GL(2,\mathbb{Z}/4)$ | 
| Order: | \(768\)\(\medspace = 2^{8} \cdot 3 \) | 
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $A_4.C_2^6.C_2^4$ | 
| $\operatorname{Aut}(H)$ | $A_8$, of order \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) | 
| $\card{W}$ | \(3\) | 
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $2$ | 
| Number of conjugacy classes in this autjugacy class | $1$ | 
| Möbius function | $0$ | 
| Projective image | not computed |