Properties

Label 768.1085882.2.b1.a1
Order $ 2^{7} \cdot 3 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2.\GL(2,\mathbb{Z}/4)$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Index: \(2\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,2)(3,7)(4,5,8,6)(10,12), (1,3)(2,7)(4,8)(5,6), (9,12)(10,11), (1,4)(2,6)(3,8)(5,7), (2,7)(5,6), (4,8)(5,6), (10,11,12), (9,11)(10,12)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_2^3.\GL(2,\mathbb{Z}/4)$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4:D_4\times S_4$, of order \(3072\)\(\medspace = 2^{10} \cdot 3 \)
$\operatorname{Aut}(H)$ $C_2\wr C_2^2\times S_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\wr C_2^2\times S_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_2^2.\GL(2,\mathbb{Z}/4)$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2^3.\GL(2,\mathbb{Z}/4)$
Complements:$C_2$ $C_2$ $C_2$ $C_2$
Minimal over-subgroups:$C_2^3.\GL(2,\mathbb{Z}/4)$
Maximal under-subgroups:$C_2^5:C_6$$C_2.\GL(2,\mathbb{Z}/4)$$C_2^5:C_4$$C_2^3.D_6$

Other information

Möbius function$-1$
Projective image$C_2^2.\GL(2,\mathbb{Z}/4)$