Properties

Label 768.1085882.16.n1.a1
Order $ 2^{4} \cdot 3 $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times A_4$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(9,12)(10,11), (1,4)(2,6)(3,8)(5,7), (2,7)(5,6), (10,11,12), (9,11)(10,12)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2^3.\GL(2,\mathbb{Z}/4)$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4:D_4\times S_4$, of order \(3072\)\(\medspace = 2^{10} \cdot 3 \)
$\operatorname{Aut}(H)$ $S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$\operatorname{res}(S)$$C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$A_4$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_2^4$
Normalizer:$A_4\times C_2^4$
Normal closure:$C_2^3\times A_4$
Core:$A_4$
Minimal over-subgroups:$C_2^3\times A_4$$C_2^3\times A_4$$C_2^3\times A_4$
Maximal under-subgroups:$C_2\times A_4$$C_2\times A_4$$C_2^4$$C_2\times C_6$

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$0$
Projective image$C_2^3.\GL(2,\mathbb{Z}/4)$