Subgroup ($H$) information
Description: | $C_2^4:C_{12}$ |
Order: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
Index: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Generators: |
$\left(\begin{array}{rr}
17 & 16 \\
16 & 1
\end{array}\right), \left(\begin{array}{rr}
17 & 0 \\
16 & 17
\end{array}\right), \left(\begin{array}{rr}
17 & 0 \\
0 & 17
\end{array}\right), \left(\begin{array}{rr}
15 & 16 \\
16 & 31
\end{array}\right), \left(\begin{array}{rr}
1 & 16 \\
16 & 1
\end{array}\right), \left(\begin{array}{rr}
9 & 16 \\
16 & 25
\end{array}\right), \left(\begin{array}{rr}
3 & 21 \\
7 & 28
\end{array}\right)$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, monomial (hence solvable), metabelian, and an A-group.
Ambient group ($G$) information
Description: | $C_2^4:C_{48}$ |
Order: | \(768\)\(\medspace = 2^{8} \cdot 3 \) |
Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Derived length: | $2$ |
The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Quotient group ($Q$) structure
Description: | $C_4$ |
Order: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Automorphism Group: | $C_2$, of order \(2\) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2.C_2^6.D_6^2$ |
$\operatorname{Aut}(H)$ | $C_2^3:S_4^2$, of order \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_2\times S_4^2$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(16\)\(\medspace = 2^{4} \) |
$W$ | $A_4$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Related subgroups
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $0$ |
Projective image | $C_4\times A_4$ |