Subgroup ($H$) information
Description: | $C_2^2\times C_8$ |
Order: | \(32\)\(\medspace = 2^{5} \) |
Index: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Exponent: | \(8\)\(\medspace = 2^{3} \) |
Generators: |
$\left(\begin{array}{rr}
17 & 16 \\
16 & 1
\end{array}\right), \left(\begin{array}{rr}
17 & 16 \\
0 & 17
\end{array}\right), \left(\begin{array}{rr}
29 & 24 \\
8 & 21
\end{array}\right)$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).
Ambient group ($G$) information
Description: | $C_2^4:C_{48}$ |
Order: | \(768\)\(\medspace = 2^{8} \cdot 3 \) |
Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Derived length: | $2$ |
The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2.C_2^6.D_6^2$ |
$\operatorname{Aut}(H)$ | $C_2^4:S_4$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \) |
$\operatorname{res}(S)$ | $C_2^3$, of order \(8\)\(\medspace = 2^{3} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(256\)\(\medspace = 2^{8} \) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $9$ |
Number of conjugacy classes in this autjugacy class | $3$ |
Möbius function | $0$ |
Projective image | $C_2^2\times A_4$ |