Properties

Label 765.1.5.a1.a1
Order $ 3^{2} \cdot 17 $
Index $ 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{153}$
Order: \(153\)\(\medspace = 3^{2} \cdot 17 \)
Index: \(5\)
Exponent: \(153\)\(\medspace = 3^{2} \cdot 17 \)
Generators: $a^{340}, a^{45}, a^{255}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), maximal, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,17$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, and a Hall subgroup.

Ambient group ($G$) information

Description: $C_{765}$
Order: \(765\)\(\medspace = 3^{2} \cdot 5 \cdot 17 \)
Exponent: \(765\)\(\medspace = 3^{2} \cdot 5 \cdot 17 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,5,17$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Quotient group ($Q$) structure

Description: $C_5$
Order: \(5\)
Exponent: \(5\)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_4\times C_{48}$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\operatorname{Aut}(H)$ $C_2\times C_{48}$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times C_{48}$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{765}$
Normalizer:$C_{765}$
Complements:$C_5$
Minimal over-subgroups:$C_{765}$
Maximal under-subgroups:$C_{51}$$C_9$

Other information

Möbius function$-1$
Projective image$C_5$