Properties

Label 756.93.108.a1.a1
Order $ 7 $
Index $ 2^{2} \cdot 3^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7$
Order: \(7\)
Index: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Exponent: \(7\)
Generators: $d^{3}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $7$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $\He_3:D_{14}$
Order: \(756\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 7 \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_3^2:D_6$
Order: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2\times C_3^2:\GL(2,3)$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Outer Automorphisms: $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$F_7\times C_3^2:\GL(2,3)$, of order \(18144\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 7 \)
$\operatorname{Aut}(H)$ $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3024\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 7 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$\He_3:C_{14}$
Normalizer:$\He_3:D_{14}$
Complements:$C_3^2:D_6$
Minimal over-subgroups:$C_{21}$$C_{21}$$C_{21}$$C_{21}$$C_{21}$$D_7$$C_{14}$$D_7$
Maximal under-subgroups:$C_1$

Other information

Möbius function$0$
Projective image$\He_3:D_{14}$