Properties

Label 746496.n.4.C
Order $ 2^{8} \cdot 3^{6} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^5.C_4^3:A_4$
Order: \(186624\)\(\medspace = 2^{8} \cdot 3^{6} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $\langle(3,5,8)(7,16,10), (19,20)(23,25)(27,29)(28,30), (24,26)(27,29), (19,20) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), nonabelian, and solvable. Whether it is a direct factor, a semidirect factor, or monomial has not been computed.

Ambient group ($G$) information

Description: $C_3^5.D_4^3:S_3$
Order: \(746496\)\(\medspace = 2^{10} \cdot 3^{6} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3\times C_6^4.(C_6\times A_4).C_2^4$
$\operatorname{Aut}(H)$ $(C_3^2\times C_6^2).C_2^4.C_6^3.C_2^5$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer:$C_3^5.D_4^3:S_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed