Properties

Label 746496.bh.108.II
Order $ 2^{8} \cdot 3^{3} $
Index $ 2^{2} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_2^3\times C_6^2):D_{12}$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Index: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(4,11,10)(5,9,8)(13,18,19)(16,20)(17,21), (2,5)(3,11)(4,10)(8,9)(14,17,21) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $(C_2^3\times C_6^3).C_6^2:D_6$
Order: \(746496\)\(\medspace = 2^{10} \cdot 3^{6} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.(C_3^2\times S_3^3):D_6$, of order \(1492992\)\(\medspace = 2^{11} \cdot 3^{6} \)
$\operatorname{Aut}(H)$ $C_6^2.(C_2\times A_4).C_2^6.C_2$
$W$$(C_2^3\times C_6^2):D_{12}$, of order \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)

Related subgroups

Centralizer: not computed
Normalizer:$(C_2^4\times C_6^2):D_{12}$
Normal closure:$(C_2^3\times C_6^3).C_6^2:D_6$
Core:$C_1$

Other information

Number of subgroups in this autjugacy class$54$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$(C_2^3\times C_6^3).C_6^2:D_6$