Properties

Label 74112.p.16._.G
Order $ 2^{3} \cdot 3 \cdot 193 $
Index $ 2^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{4632}$
Order: \(4632\)\(\medspace = 2^{3} \cdot 3 \cdot 193 \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(4632\)\(\medspace = 2^{3} \cdot 3 \cdot 193 \)
Generators: $b^{4632}, b^{9264}, b^{96}, b^{6176}, b^{2316}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,193$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group). Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_{18528}.C_4$
Order: \(74112\)\(\medspace = 2^{7} \cdot 3 \cdot 193 \)
Exponent: \(18528\)\(\medspace = 2^{5} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Quotient group ($Q$) structure

Description: $C_4^2$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $\GL(2,\mathbb{Z}/4)$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
Outer Automorphisms: $\GL(2,\mathbb{Z}/4)$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{386}.C_{12}.C_8^2.C_2^4$
$\operatorname{Aut}(H)$ $C_2^3\times C_{192}$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed