Properties

Label 74088.k.9.c1
Order $ 2^{3} \cdot 3 \cdot 7^{3} $
Index $ 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7^2:(C_2^2\times F_7)$
Order: \(8232\)\(\medspace = 2^{3} \cdot 3 \cdot 7^{3} \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $a^{3}, cd^{30}, d^{21}, a^{2}b^{4}d^{14}, b^{21}, d^{6}, b^{6}c^{3}d^{30}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, a semidirect factor, nonabelian, and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $\He_7:C_6^3$
Order: \(74088\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 7^{3} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_3^2$
Order: \(9\)\(\medspace = 3^{2} \)
Exponent: \(3\)
Automorphism Group: $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Outer Automorphisms: $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\He_7.C_3.C_6^3.C_2^3$
$\operatorname{Aut}(H)$ $\He_7.C_6^2.C_2^3$
$W$$\He_7:C_6^2$, of order \(12348\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7^{3} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$\He_7:C_6^3$
Complements:$C_3^2$ $C_3^2$ $C_3^2$
Minimal over-subgroups:$C_2\times \He_7:C_6^2$$C_{14}.F_7^2$
Maximal under-subgroups:$C_2\times C_7^2:F_7$$C_2\times C_7^2:F_7$$C_7^2:(C_2\times F_7)$$C_{14}.D_7^2$$D_{14}\times F_7$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$3$
Möbius function$3$
Projective image$C_{21}.F_7^2$