Properties

Label 740.10.10.a1.a1
Order $ 2 \cdot 37 $
Index $ 2 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{37}$
Order: \(74\)\(\medspace = 2 \cdot 37 \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(74\)\(\medspace = 2 \cdot 37 \)
Generators: $a^{2}, b^{5}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{185}:C_4$
Order: \(740\)\(\medspace = 2^{2} \cdot 5 \cdot 37 \)
Exponent: \(740\)\(\medspace = 2^{2} \cdot 5 \cdot 37 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $D_5$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{185}.C_9.C_4^2$
$\operatorname{Aut}(H)$ $F_{37}$, of order \(1332\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 37 \)
$\operatorname{res}(\operatorname{Aut}(G))$$F_{37}$, of order \(1332\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 37 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(20\)\(\medspace = 2^{2} \cdot 5 \)
$W$$C_{37}:C_4$, of order \(148\)\(\medspace = 2^{2} \cdot 37 \)

Related subgroups

Centralizer:$C_5$
Normalizer:$C_{185}:C_4$
Minimal over-subgroups:$C_5\times D_{37}$$C_{37}:C_4$
Maximal under-subgroups:$C_{37}$$C_2$

Other information

Möbius function$5$
Projective image$C_{185}:C_4$