Subgroup ($H$) information
Description: | $D_{37}$ |
Order: | \(74\)\(\medspace = 2 \cdot 37 \) |
Index: | \(10\)\(\medspace = 2 \cdot 5 \) |
Exponent: | \(74\)\(\medspace = 2 \cdot 37 \) |
Generators: |
$a^{2}, b^{5}$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Ambient group ($G$) information
Description: | $C_{185}:C_4$ |
Order: | \(740\)\(\medspace = 2^{2} \cdot 5 \cdot 37 \) |
Exponent: | \(740\)\(\medspace = 2^{2} \cdot 5 \cdot 37 \) |
Derived length: | $2$ |
The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Quotient group ($Q$) structure
Description: | $D_5$ |
Order: | \(10\)\(\medspace = 2 \cdot 5 \) |
Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) |
Automorphism Group: | $F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Derived length: | $2$ |
The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{185}.C_9.C_4^2$ |
$\operatorname{Aut}(H)$ | $F_{37}$, of order \(1332\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 37 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $F_{37}$, of order \(1332\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 37 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
$W$ | $C_{37}:C_4$, of order \(148\)\(\medspace = 2^{2} \cdot 37 \) |
Related subgroups
Centralizer: | $C_5$ | |
Normalizer: | $C_{185}:C_4$ | |
Minimal over-subgroups: | $C_5\times D_{37}$ | $C_{37}:C_4$ |
Maximal under-subgroups: | $C_{37}$ | $C_2$ |
Other information
Möbius function | $5$ |
Projective image | $C_{185}:C_4$ |