Properties

Label 732050.s.3025.a1
Order $ 2 \cdot 11^{2} $
Index $ 5^{2} \cdot 11^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}\times D_{11}$
Order: \(242\)\(\medspace = 2 \cdot 11^{2} \)
Index: \(3025\)\(\medspace = 5^{2} \cdot 11^{2} \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Generators: $a^{55}, d^{5}, a^{10}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_5\times C_{11}^3:C_{110}$
Order: \(732050\)\(\medspace = 2 \cdot 5^{2} \cdot 11^{4} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\He_{11}.C_{11}^2.C_5^3.C_2^3.C_2$
$\operatorname{Aut}(H)$ $C_{10}\times F_{11}$, of order \(1100\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 11 \)
$W$$F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_{55}$
Normalizer:$C_{55}\times F_{11}$
Normal closure:$C_{11}^3:C_{22}$
Core:$C_{11}$
Minimal over-subgroups:$C_{11}^2:C_{22}$$D_{11}\times C_{55}$$C_{11}\times F_{11}$
Maximal under-subgroups:$C_{11}^2$$C_{22}$$D_{11}$

Other information

Number of subgroups in this autjugacy class$121$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_5\times C_{11}^3:C_{110}$