Properties

Label 732050.s.275.a1
Order $ 2 \cdot 11^{3} $
Index $ 5^{2} \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}^3:C_2$
Order: \(2662\)\(\medspace = 2 \cdot 11^{3} \)
Index: \(275\)\(\medspace = 5^{2} \cdot 11 \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Generators: $a^{55}, cd^{45}, d^{5}, b$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_5\times C_{11}^3:C_{110}$
Order: \(732050\)\(\medspace = 2 \cdot 5^{2} \cdot 11^{4} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_5\times C_{55}$
Order: \(275\)\(\medspace = 5^{2} \cdot 11 \)
Exponent: \(55\)\(\medspace = 5 \cdot 11 \)
Automorphism Group: $C_{10}\times \GL(2,5)$
Outer Automorphisms: $C_{10}\times \GL(2,5)$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 5$ (hence hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$\He_{11}.C_{11}^2.C_5^3.C_2^3.C_2$
$\operatorname{Aut}(H)$ $C_{11}^3.C_{10}.\PSL(3,11)$
$W$$C_{11}^3:C_{110}$, of order \(146410\)\(\medspace = 2 \cdot 5 \cdot 11^{4} \)

Related subgroups

Centralizer:$C_5$
Normalizer:$C_5\times C_{11}^3:C_{110}$
Complements:$C_5\times C_{55}$
Minimal over-subgroups:$C_{11}^3:C_{22}$$C_{11}^3:C_{10}$$C_{11}^3:C_{10}$
Maximal under-subgroups:$C_{11}^3$$C_{11}:D_{11}$$C_{11}:D_{11}$$C_{11}:D_{11}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-5$
Projective image$C_5\times C_{11}^3:C_{110}$