Properties

Label 732050.s.242.d1
Order $ 5^{2} \cdot 11^{2} $
Index $ 2 \cdot 11^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}^2:C_5^2$
Order: \(3025\)\(\medspace = 5^{2} \cdot 11^{2} \)
Index: \(242\)\(\medspace = 2 \cdot 11^{2} \)
Exponent: \(55\)\(\medspace = 5 \cdot 11 \)
Generators: $a^{22}, bd^{20}, cd^{45}, d^{11}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_5\times C_{11}^3:C_{110}$
Order: \(732050\)\(\medspace = 2 \cdot 5^{2} \cdot 11^{4} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\He_{11}.C_{11}^2.C_5^3.C_2^3.C_2$
$\operatorname{Aut}(H)$ $F_5\times C_{11}^2.C_{10}.\PSL(2,11).C_2$
$W$$C_{11}:F_{11}$, of order \(1210\)\(\medspace = 2 \cdot 5 \cdot 11^{2} \)

Related subgroups

Centralizer:$C_5$
Normalizer:$C_{55}:F_{11}$
Normal closure:$C_{11}^3:C_5^2$
Core:$C_5$
Minimal over-subgroups:$C_{11}^3:C_5^2$$C_{55}:F_{11}$
Maximal under-subgroups:$C_{11}\times C_{55}$$C_{11}^2:C_5$$C_{55}:C_5$$C_{55}:C_5$

Other information

Number of subgroups in this autjugacy class$1331$
Number of conjugacy classes in this autjugacy class$11$
Möbius function$0$
Projective image$C_{11}^3:C_{110}$