Properties

Label 732050.s.110.d1
Order $ 5 \cdot 11^{3} $
Index $ 2 \cdot 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times \He_{11}$
Order: \(6655\)\(\medspace = 5 \cdot 11^{3} \)
Index: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Exponent: \(55\)\(\medspace = 5 \cdot 11 \)
Generators: $d^{11}, cd^{45}, d^{5}, a^{10}b$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 11$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_5\times C_{11}^3:C_{110}$
Order: \(732050\)\(\medspace = 2 \cdot 5^{2} \cdot 11^{4} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\He_{11}.C_{11}^2.C_5^3.C_2^3.C_2$
$\operatorname{Aut}(H)$ $C_4\times C_{11}^2.C_{10}.\PSL(2,11).C_2$
$W$$\He_{11}$, of order \(1331\)\(\medspace = 11^{3} \)

Related subgroups

Centralizer:$C_{55}$
Normalizer:$C_{11}^3:C_{55}$
Normal closure:$C_{11}^3:C_{55}$
Core:$C_{11}\times C_{55}$
Minimal over-subgroups:$C_{11}^3:C_{55}$
Maximal under-subgroups:$\He_{11}$$C_{11}\times C_{55}$$C_{11}\times C_{55}$

Other information

Number of subgroups in this autjugacy class$10$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_{11}^3:C_{110}$