Properties

Label 732050.s.10.b1
Order $ 5 \cdot 11^{4} $
Index $ 2 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}^3:C_{55}$
Order: \(73205\)\(\medspace = 5 \cdot 11^{4} \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(55\)\(\medspace = 5 \cdot 11 \)
Generators: $a^{22}d, b, cd^{45}, a^{10}, d^{5}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_5\times C_{11}^3:C_{110}$
Order: \(732050\)\(\medspace = 2 \cdot 5^{2} \cdot 11^{4} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\He_{11}.C_{11}^2.C_5^3.C_2^3.C_2$
$\operatorname{Aut}(H)$ $C_{11}^3.C_{11}^2.C_{10}^2$
$W$$C_{11}^3:C_{110}$, of order \(146410\)\(\medspace = 2 \cdot 5 \cdot 11^{4} \)

Related subgroups

Centralizer:$C_5$
Normalizer:$C_5\times C_{11}^3:C_{110}$
Complements:$C_{10}$ $C_{10}$
Minimal over-subgroups:$C_5\times C_{11}^3:C_{55}$$C_{11}^3:C_{110}$
Maximal under-subgroups:$C_{11}^3:C_{11}$$C_{11}^3:C_5$$C_{11}^2:C_{55}$

Other information

Number of subgroups in this autjugacy class$5$
Number of conjugacy classes in this autjugacy class$5$
Möbius function$1$
Projective image$C_5\times C_{11}^3:C_{110}$